Model-Checking ω-Regular Properties of Interval Markov Chains

نویسندگان

  • Krishnendu Chatterjee
  • Koushik Sen
  • Thomas A. Henzinger
چکیده

We study the problem of model checking Interval-valued Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time finite Markov Chains for which the exact transition probabilities are not known. Instead in IDTMCs, each transition is associated with an interval in which the actual transition probability must lie. We consider two semantic interpretations for the uncertainty in the transition probabilities of an IDTMC. In the first interpretation, we think of an IDTMC as representing a (possibly uncountable) family of (classical) discrete-time Markov Chains, where each member of the family is a Markov Chain whose transition probabilities lie within the interval range given in the IDTMC. We call this semantic interpretation Uncertain Markov Chains (UMC). In the second semantics for an IDTMC, which we call Interval Markov Decision Process (IMDP), we view the uncertainty as being resolved through non-determinism. In other words, each time a state is visited, we adversarially pick a transition distribution that respects the interval constraints, and take a probabilistic step according to the chosen distribution. We introduce a logic ω-PCTL that can express liveness, strong fairness, and ω-regular properties (such properties cannot be expressed in PCTL). We show that the ω-PCTL model checking problem for Uncertain Markov Chain semantics is decidable in PSPACE (same as the best known upper bound for PCTL) and for Interval Markov Decision Process semantics is decidable in coNP (improving the previous known PSPACE bound for PCTL). We also show that the qualitative fragment of the logic can be solved in coNP for the UMC interpretation, and can be solved in polynomial time for a sub-class of UMCs. We also prove lower bounds for these model checking problems. We show that the model checking problem of IDTMCs with LTL formulas can be solved for both UMC and IMDP semantics by reduction to the model checking problem of IDTMC with ω-PCTL formulas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Checking ω-regular Properties for Quantum Markov Chains∗

Quantum Markov chains are an extension of classical Markov chains which are labelled with super-operators rather than probabilities. They allow to faithfully represent quantum programs and quantum protocols. In this paper, we investigate model checking ω-regular properties, a very general class of properties (including, e.g., LTL properties) of interest, against this model. For classical Markov...

متن کامل

Computing Conditional Probabilities in Markovian Models Efficiently Extended Version

The fundamentals of probabilistic model checking for Markovian models and temporal properties have been studied extensively in the past 20 years. Research on methods for computing conditional probabilities for temporal properties under temporal conditions is, however, comparably rare. For computing conditional probabilities or expected values under ω-regular conditions in Markov chains, we intr...

متن کامل

Verifying ω-Regular Properties of Markov Chains

In this work we focus on model checking of probabilistic models. Probabilistic models are widely used to describe randomized protocols. A Markov chain induces a probability measure on sets of computations. The notion of correctness now becomes probabilistic. We solve here the general problem of lineartime probabilistic model checking with respect to ω-regular specifications. As specification fo...

متن کامل

Analysis of Probabilistic Processes and Automata Theory

This chapter surveys some basic algorithms for analyzing Markov chains (MCs) and Markov decision processes (MDPs), and discusses their computational complexity. We focus on discrete-time processes, and we consider both finite-state models as well as countably infinite-state models that are finitely-presented. The analyses we will primarily focus on are hitting (reachability) probabilities and ω...

متن کامل

LTL Model Checking of Interval Markov Chains

Interval Markov chains (IMCs) generalize ordinary Markov chains by having interval-valued transition probabilities. They are useful for modeling systems in which some transition probabilities depend on an unknown environment, are only approximately known, or are parameters that can be controlled. We consider the problem of computing values for the unknown probabilities in an IMC that maximize t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008